Open Access


Read more
image01

Online Manuscript Submission


Read more
image01

Submitted Manuscript Trail


Read more
image01

Online Payment


Read more
image01

Online Subscription


Read more
image01

Email Alert



Read more
image01

Original Research Article | OPEN ACCESS

Kruppel-like factor 8 promotes aerobic glycolysis in prostate cancer cells by regulating AKT/mTOR signaling pathway

Cunming Zhang1, Song Chen1, Lide Song2, Haibo Ye1, Junwei Wang1

1Department of Urinary Surgery, The Affiliated Wenling Hospital of Wenzhou Medical University, Taizhou City, Zhejiang Province 317500; 2Department of Urinary Surgery, Zhuji People's Hospital, Shaoxing City, Zhejiang Province 311800, China.

For correspondence:-  Junwei Wang   Email: weijun_wang123@163.com   Tel:+8657689668155

Accepted: 30 September 2020        Published: 30 October 2020

Citation: Zhang C, Chen S, Song L, Ye H, Wang J. Kruppel-like factor 8 promotes aerobic glycolysis in prostate cancer cells by regulating AKT/mTOR signaling pathway. Trop J Pharm Res 2020; 19(10):2091-2096 doi: ttp://dx.doi.org/10.4314/tjpr.v19i10.11

© 2020 The authors.
This is an Open Access article that uses a funding model which does not charge readers or their institutions for access and distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0) and the Budapest Open Access Initiative (http://www.budapestopenaccessinitiative.org/read), which permit unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited..

Abstract

Purpose: To investigate the effects of Krüppel-like factor 8 (KLF8) in prostate cancer (PCa) cell viability and glycolysis, and explore its role as a regulatory factor.
Methods: Immunoblot assays were conducted to assess the expression of KLF8 and proteins in AKT/mTOR pathway in PCa cell lines PC-3 and DU145. Cell Counting Kit-8 assays were performed to assess the effect of KLF8 on PCa cell viability. The glycolysis capacity of PCa cells was determined by measuring the levels of glucose intake, lactic acid production, and cellular ATP levels.
Results: Depletion of KLF8 decreased the survival of PCa cells in vitro (p < 0.05). KLF8 depletion also inhibited aerobic glucose metabolism in PCa cells (p < 0.05). Further studies confirmed that KLF8 contributed to the growth and glycolysis of PCa cells via the regulation of AKT/mTOR pathway.
Conclusion: KLF8 regulates glycolysis in PCa cells by regulating AKT/mTOR signaling pathway and is thus a promising therapeutic target for PCa treatment.

Keywords: Krüppel-like factor 8 (KLF8), Prostate cancer (PCa), Aerobic glucose, AKT/mTOR signaling pathway, Therapeutic target

Impact Factor
Thompson Reuters (ISI): 0.523 (2021)
H-5 index (Google Scholar): 39 (2021)

Article Tools

Share this article with



Article status: Free
Fulltext in PDF
Similar articles in Google
Similar article in this Journal:

Archives

2024; 23: 
1,   2,   3,   4
2023; 22: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2022; 21: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2021; 20: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2020; 19: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2019; 18: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2018; 17: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2017; 16: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2016; 15: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2015; 14: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2014; 13: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2013; 12: 
1,   2,   3,   4,   5,   6
2012; 11: 
1,   2,   3,   4,   5,   6
2011; 10: 
1,   2,   3,   4,   5,   6
2010; 9: 
1,   2,   3,   4,   5,   6
2009; 8: 
1,   2,   3,   4,   5,   6
2008; 7: 
1,   2,   3,   4
2007; 6: 
1,   2,   3,   4
2006; 5: 
1,   2
2005; 4: 
1,   2
2004; 3: 
1
2003; 2: 
1,   2
2002; 1: 
1,   2

News Updates